Страница:
<< 37 38 39 40 41 42 43 >> [Всего задач: 239]
Дан равносторонний треугольник ABC. Сторона BC разделена на три равные части точками K и L, а точка M делит сторону AC в отношении 1 : 2, считая от вершины A. Докажите, что сумма углов AKM и ALM равна 30°.
На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что
AC = BD, 2∠ACF = ∠ADB, 2∠CAF = ∠CDB.
Докажите, что AD = CE.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Из вершины B треугольника ABC опущен перпендикуляр BM на биссектрису угла C. Пусть K – точка касания вписанной окружности со стороной BC.
Найдите угол MKB, если известно, что ∠BAC = α.
На продолжениях сторон
CA и AB треугольника ABC за точки A и B соответственно
отложены отрезки AE = BC и BF = AC. Окружность касается отрезка
BF в точке N, стороны BC и продолжения стороны AC за точку
C. Точка M – середина отрезка EF. Докажите, что прямая MN
параллельна биссектрисе угла A.
На одной из сторон прямого угла даны точки A и B (точка A расположена между вершиной угла и точкой B).
С помощью циркуля и линейки постройте на другой стороне такую точку X, чтобы ∠AXB = 2∠ABX.
Страница:
<< 37 38 39 40 41 42 43 >> [Всего задач: 239]