ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В государстве царя Додона расположено 500 городов, каждый из которых имеет форму правильной 37-угольной звезды, в вершинах которой находятся башни. Додон решил обнести их выпуклой стеной так, чтобы каждый отрезок стены соединял две башни. Доказать, что стена будет состоять не менее чем из 37 отрезков. (Если несколько отрезков лежат на одной прямой, то они считаются за один.) ![]() ![]() В равнобедренный треугольник ABC (AB = BC) вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что AN = ⅜ AB. Найдите радиус окружности, если площадь треугольника ABC равна 12. ![]() ![]() ![]() Доказать, что если в треугольнике ABC со стороной BC = 1 радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r. ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 87]
К окружности, вписанной в равнобедренный треугольник с основанием 12 и высотой 8, проведена касательная, параллельная основанию.
Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.
Доказать, что если в треугольнике ABC со стороной BC = 1 радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r.
В равнобедренный треугольник ABC (AB = BC) вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что AN = ⅜ AB. Найдите радиус окружности, если площадь треугольника ABC равна 12.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 87] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |