ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10. ![]() ![]() Дано число H = 2·3·5·7·11·13·17·19·23·29·31·37 (произведение простых чисел). Пусть 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ..., H – все его делители, выписанные в порядке возрастания. Под рядом делителей выпишем ряд из единиц и минус единиц по следующему правилу: под единицей 1, под числом, которое разлагается на чётное число простых сомножителей, 1, и под числом, которое разлагается на нечётное число простых сомножителей, –1. Доказать, что сумма чисел полученного ряда равна 0. ![]() ![]() ![]() Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость. ![]() ![]() ![]() Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o . ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71]
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиусы не меньше ½.
Известно, что множество M точек на прямой может быть покрыто тремя отрезками длины 1.
Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |