Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 71]
|
|
Сложность: 4- Классы: 9,10,11
|
Несколько отрезков покрывают отрезок [0, 1].
Докажите, что среди них можно выбрать несколько непересекающихся отрезков, сумма длин которых не меньше ½.
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите, что в условии задач 60445 б) и в) числа 1/5 и 1/20 нельзя заменить большими величинами.
>
|
|
Сложность: 4- Классы: 9,10
|
Обозначим через
a наибольшее число непересекающихся кругов диаметра 1,
центры которых лежат внутри многоугольника
M, через
b — наименьшее
число кругов радиуса 1, которыми можно покрыть весь многоугольник
M.
Какое число больше:
a или
b?
|
|
Сложность: 4 Классы: 7,8,9
|
В четырёх заданных точках на плоскости расположены прожекторы, каждый из
которых может освещать прямой угол. Стороны этих углов могут быть направлены
на север, юг, запад или восток. Доказать, что эти прожекторы можно направить
так, что они осветят всю плоскость.
|
|
Сложность: 4 Классы: 8,9,10
|
Вдоль коридора положено несколько кусков ковровой дорожки. Куски покрывают весь
коридор из конца в конец без пропусков и даже налегают друг на друга, так что
над некоторыми местами пола они лежат в несколько слоев. Доказать, что можно
убрать несколько кусков, возможно, достав их из-под других и оставив остальные
в точности на тех же местах, где они лежали прежде, так что коридор по-прежнему
будет полностью покрыт, и общая длина оставленных кусков будет меньше удвоенной
длины коридора.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 71]