Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 71]
Длина проекции фигуры
![$ \Phi$](show_document.php?id=604454)
на любую прямую не превосходит 1.
Верно ли, что
![$ \Phi$](show_document.php?id=604454)
можно накрыть кругом диаметра: а) 1; б)
1,5?
|
|
Сложность: 5 Классы: 9,10,11
|
Некоторый треугольник можно вырезать из бумажной полоски единичной ширины, а из
любой полоски меньшей ширины его вырезать нельзя. Какую площадь может иметь
этот треугольник?
Про бесконечный набор прямоугольников известно, что в нём для любого числа S найдутся прямоугольники суммарной площади больше S.
а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?
б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.
|
|
Сложность: 5 Классы: 10,11
|
а) В бесконечной последовательности бумажных прямоугольников площадь n-го прямоугольника равна n². Обязательно ли можно покрыть ими плоскость? Наложения допускаются.
б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа N найдутся квадраты суммарной площади больше N?
|
|
Сложность: 5+ Классы: 8,9,10
|
Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 71]