ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямые a и b пересекаются. Докажите, что все прямые, параллельные прямой b и пересекающие прямую a , лежат в одной плоскости.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 65]      



Задача 109245

Темы:   [ Параллельность прямых и плоскостей ]
[ Прямые и плоскости в пространстве ]
Сложность: 3
Классы: 10,11

Прямая a параллельна плоскости α . Прямая b , параллельная прямой a , проходит через точку M плоскости α . Докажите, что прямая b лежит в плоскости α .
Прислать комментарий     Решение


Задача 109248

Темы:   [ Параллельность прямых и плоскостей ]
[ Прямые и плоскости в пространстве ]
Сложность: 3
Классы: 10,11

Докажите, что прямая, пересекающая одну из двух параллельных плоскостей, пересекает и другую.
Прислать комментарий     Решение


Задача 109250

Темы:   [ Параллельность прямых и плоскостей ]
[ Прямые и плоскости в пространстве ]
Сложность: 3
Классы: 10,11

Прямые a и b пересекаются. Докажите, что все прямые, параллельные прямой b и пересекающие прямую a , лежат в одной плоскости.
Прислать комментарий     Решение


Задача 116244

Темы:   [ Параллельность прямых и плоскостей ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 10,11

В пространстве расположена замкнутая шестизвенная ломаная ABCDEF, противоположные звенья которой параллельны  (AB || DE,  BC || EF  и
CD || FA).  При этом AB не равно DE. Докажите, что все звенья ломаной лежат в одной плоскости.

Прислать комментарий     Решение

Задача 87012

Тема:   [ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11


Через диагональ куба, ребро которого равно a, проведена плоскость, параллельная диагонали одной из граней куба. Найдите площадь полученного сечения.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .