ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны такие натуральные числа a и b, что число a+1/b + b+1/a является целым. Докажите, что наибольший общий делитель чисел a и b не превосходит числа ![]() |
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 418]
Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)
Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?
Для натуральных чисел x и y число x² + xy + y² в десятичной записи оканчивается нулем. Докажите, что оно оканчивается хотя бы двумя нулями.
20 шахматистов сыграли турнир в один круг. Корреспондент "Спортивной газеты" написал в своей заметке, что каждый участник этого турнира выиграл столько же партий, сколько и свёл вничью. Докажите, что корреспондент ошибся.
Докажите, что наибольший общий делитель чисел a и b не превосходит числа
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 418] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |