ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 418]      



Задача 35324

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?

Прислать комментарий     Решение

Задача 35438

Темы:   [ Теория графов (прочее) ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

В компании у каждых двух людей ровно пять общих знакомых. Докажите, что количество пар знакомых делится на 3.

Прислать комментарий     Решение

Задача 35562

Темы:   [ Целочисленные и целозначные многочлены ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Докажите, что не существует многочлена P(x) с целыми коэффициентами, для которого  P(6) = 5  и  P(14) = 9.

Прислать комментарий     Решение

Задача 60471

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Докажите, что при  n > 2  числа  2n – 1  и  2n + 1  не могут быть простыми одновременно.

Прислать комментарий     Решение

Задача 60694

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Найдите конечную арифметическую прогрессию с разностью 6 максимальной длины, состоящую из простых чисел.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .