ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 110306

Темы:   [ Кратчайший путь по поверхности ]
[ Развертка помогает решить задачу ]
Сложность: 4
Классы: 10,11

В вершине A прямоугольника ABCD со сторонами AB = a , BC = b сидит паук, а в противоположной вершине – муха. Их разделяет вертикальная стенка в виде равнобедренного треугольника BMD с основанием BD и углом α при вершине M . Найдите длину кратчайшего пути от паука к мухе, если известно, что паук может двигаться лишь по той части плоскости прямоугольника, где находится стена (включая границу прямоугольника), и по самой стене.
Прислать комментарий     Решение


Задача 105211

Темы:   [ Замощения костями домино и плитками ]
[ Развертка помогает решить задачу ]
[ Прямоугольный тетраэдр ]
[ Движение помогает решить задачу ]
[ Метод координат в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Можно ли замостить все пространство равными тетраэдрами, все грани которых — прямоугольные треугольники?
Прислать комментарий     Решение


Задача 109643

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Развертка помогает решить задачу ]
[ Теорема о трех перпендикулярах ]
[ Правильный тетраэдр ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 5-
Классы: 10,11

Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.

Прислать комментарий     Решение

Задача 110300

Темы:   [ Кратчайший путь по поверхности ]
[ Правильный тетраэдр ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 10,11

Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.
Прислать комментарий     Решение


Задача 110301

Темы:   [ Кратчайший путь по поверхности ]
[ Куб ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 10,11

Найдите длину кратчайшего пути по поверхности единичного куба между его противоположными вершинами.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .