ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Гидры состоят из голов и шей (каждая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить её на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более чем N ударов.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 157]      



Задача 109714

Темы:   [ Числовые таблицы и их свойства ]
[ Раскраски ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
Сложность: 5
Классы: 8,9,10,11

Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.
Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.

Прислать комментарий     Решение

Задача 109769

Темы:   [ Степень вершины ]
[ Связность и разложение на связные компоненты ]
[ Правило произведения ]
Сложность: 5
Классы: 8,9,10

Автор: Лифшиц Ю.

Гидры состоят из голов и шей (каждая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить её на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более чем N ударов.

Прислать комментарий     Решение

Задача 115515

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Правило произведения ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

Команда из n школьников участвует в игре: на каждого из них надевают шапку одного из k заранее известных цветов, а затем по свистку все школьники одновременно выбирают себе по одному шарфу. Команда получает столько очков, у скольких её участников цвет шапки совпал с цветом шарфа (шарфов и шапок любого цвета имеется достаточное количество; во время игры каждый участник не видит своей шапки, зато видит шапки всех остальных, но не имеет права выдавать до свистка никакую информацию). Какое наибольшее число очков команда, заранее наметив план действий каждого её члена, может гарантированно получить:
  а) при  n = k = 2;
  б) при произвольных фиксированных n и k?

Прислать комментарий     Решение

Задача 60342

Темы:   [ Классическая комбинаторика (прочее) ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра?

Прислать комментарий     Решение

Задача 115709

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Системы счисления (прочее) ]
[ Текстовые задачи (прочее) ]
[ Правило произведения ]
Сложность: 3-
Классы: 5,6,7,8,11

Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .