ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите объём правильной шестиугольной пирамиды с боковым ребром b и плоским углом ϕ при вершине. ![]() ![]() Стороны треугольника T параллельны медианам треугольника T1. Докажите, что медианы треугольника T параллельны сторонам треугольника T1. ![]() ![]() ![]() Дано дерево с n вершинами, n ≥ 2. В его вершинах расставлены числа x1, x2, xn, а на каждом ребре записано произведение чисел, стоящих в концах этого ребра. Обозначим через S сумму чисел на всех рёбрах. Докажите, что ![]() ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]
Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?
Дано дерево с n вершинами, n ≥ 2. В его вершинах расставлены числа x1, x2, xn, а на каждом ребре записано произведение чисел, стоящих в концах этого ребра. Обозначим через S сумму чисел на всех рёбрах. Докажите, что
В стране несколько городов, некоторые пары городов соединены дорогами, причём между каждыми двумя городами существует единственный несамопересекающийся путь по дорогам. Известно, что в стране ровно 100 городов, из которых выходит по одной дороге. Докажите, что можно построить 50 новых дорог так, что после этого даже при закрытии любой дороги можно будет из каждого города попасть в любой другой.
Доказать, что
В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами
других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче
своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона.
Какое наибольшее число баронов могло быть при этих условиях?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |