ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



Задача 86560

Темы:   [ Таблицы и турниры (прочее) ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

В угловой клетке таблицы 5×5 стоит плюс, а в остальных клетках стоят минусы. Разрешается в любой строке или любом столбце поменять знаки на противоположные. Можно ли за несколько таких операций получить все знаки плюсами?

Прислать комментарий     Решение

Задача 98067

Темы:   [ Таблицы и турниры (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

Квадрат 8×8 клеток выкрашен в белый цвет. Разрешается выбрать в нём любой прямоугольник из трёх клеток и перекрасить все их в противоположный цвет (белые в чёрный, чёрные – в белый). Удастся ли несколькими такими операциями перекрасить весь квадрат в чёрный цвет?

Прислать комментарий     Решение

Задача 102844

Темы:   [ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Раскраски ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Клетки квадратной таблицы 15×15 раскрашены в красный, синий и зелёный цвета.
Докажите, что найдутся, по крайней мере, две строки, в которых клеток хотя бы одного цвета поровну.

Прислать комментарий     Решение

Задача 110083

Темы:   [ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Раскраски ]
Сложность: 3+
Классы: 7,8,9

Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?

Прислать комментарий     Решение

Задача 110107

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .