ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 563]      



Задача 108927

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

На стороне BC остроугольного треугольника ABC взята точка K. Биссектриса угла CAK вторично пересекает описанную окружность треугольника ABC в точке L. Докажите, что если прямая LK перпендикулярна отрезку AB, то либо  AK = KB,  либо  AK = AC.

Прислать комментарий     Решение

Задача 110188

Темы:   [ Свойства симметрий и осей симметрии ]
[ Трапеции (прочее) ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.

Прислать комментарий     Решение

Задача 111602

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
[ Наибольшая или наименьшая длина ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Дан равносторонний треугольник ABC. Точка K – середина стороны AB, точка M лежит на стороне BC, причём  BM : MC = 1 : 3.  На стороне AC выбрана точка P так, что периметр треугольника PKM – наименьший из возможных. В каком отношении точка P делит сторону AC?

Прислать комментарий     Решение

Задача 111812

Темы:   [ Свойства симметрий и осей симметрии ]
[ Шестиугольники ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Прислать комментарий     Решение

Задача 55613

Темы:   [ Симметрия помогает решить задачу ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
Сложность: 4
Классы: 8,9

Найдите среди всех треугольников с данным основанием и данной площадью треугольник наименьшего периметра.

Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .