ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Треугольники ABC и A1B1C1 подобны и по-разному ориентированы. На отрезке AA1 взята такая точка A', что  AA' : A1A' = BC : B1C1.  Аналогично строим B' и C'. Докажите, что A', B' и C' лежат на одной прямой.

   Решение

Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1026]      



Задача 108679

Темы:   [ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильный (равносторонний) треугольник ]
[ Четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Дан выпуклый четырёхугольник ABMC , в котором AB=BC , BAM = 30o , ACM= 150o . Докажите, что AM – биссектриса угла BMC .
Прислать комментарий     Решение


Задача 108907

Темы:   [ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

Пусть BM – медиана остроугольного треугольника ABC. Касательная в точке A к описанной окружности треугольника ABM, и касательная в точке C к описанной окружности треугольника BCM, пересекаются в точке D. Докажите, что точка K, симметричная точке D относительно прямой AC лежит на прямой BM.

Прислать комментарий     Решение

Задача 108947

Темы:   [ Общая касательная к двум окружностям ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Пусть S1 и S2 – две окружности, лежащие одна вне другой. Общая внешняя касательная касается их в точках A и B . Окружность S3 проходит через точки A и B и вторично пересекает окружности S1 и S2 в точках C и D соответственно; K – точка пересечения прямых, касающихся окружностей S1 и S2 соответственно в точках C и D . Докажите, что KC=KD .
Прислать комментарий     Решение


Задача 110792

Темы:   [ Признаки подобия ]
[ Свойства симметрий и осей симметрии ]
[ Преобразования подобия (прочее) ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 9,10,11

Треугольники ABC и A1B1C1 подобны и по-разному ориентированы. На отрезке AA1 взята такая точка A', что  AA' : A1A' = BC : B1C1.  Аналогично строим B' и C'. Докажите, что A', B' и C' лежат на одной прямой.

Прислать комментарий     Решение

Задача 110812

Темы:   [ Гомотетия помогает решить задачу ]
[ Симметрия помогает решить задачу ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 2.
Прислать комментарий     Решение


Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .