ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность касается стороны AD четырёхугольника ABCD в точке D , а стороны BC – в её середине M . Диагональ AC пересекает окружность в точках K и L , ( AK<AL ). Известно, что AK=3 , KL=5 , LC=1 . Лучи AD и BC пересекаются в точке S , причём ASB = 60o . Найдите радиус окружности и площадь четырёхугольника ABCD .

   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 404]      



Задача 108170

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

На сторонах AB , BC и AC треугольника ABC взяты точки C' , A' и B' соответственно. Докажите, что площадь треугольника A'B'C' равна

,

где R – радиус описанной окружности треугольника ABC .
Прислать комментарий     Решение

Задача 110907

Темы:   [ Теорема косинусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

Окружность касается стороны AD четырёхугольника ABCD в точке D , а стороны BC – в её середине M . Диагональ AC пересекает окружность в точках K и L , ( AK<AL ). Известно, что AK=5 , KL=4 , LC=1 . Лучи AD и BC пересекаются в точке S , причём ASB = 120o . Найдите радиус окружности и площадь четырёхугольника ABCD .
Прислать комментарий     Решение


Задача 110908

Темы:   [ Теорема косинусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

Окружность касается стороны AD четырёхугольника ABCD в точке D , а стороны BC – в её середине M . Диагональ AC пересекает окружность в точках K и L , ( AK<AL ). Известно, что AK=3 , KL=5 , LC=1 . Лучи AD и BC пересекаются в точке S , причём ASB = 60o . Найдите радиус окружности и площадь четырёхугольника ABCD .
Прислать комментарий     Решение


Задача 111503

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вневписанные окружности ]
[ Площадь треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Площадь прямоугольного треугольника равна r2 , где r – радиус окружности, касающейся одного катета и продолжений другого катета и гипотенузы. Найдите стороны треугольника.
Прислать комментарий     Решение


Задача 115600

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4
Классы: 8,9

В остроугольный треугольник ABC помещены две касающиеся окружности. Одна из них касается сторон AC и BC , а вторая — сторон AB и BC . Докажите, что сумма их радиусов больше радиуса окружности, вписанной в треугольник ABC .
Прислать комментарий     Решение


Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .