ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В государстве царя Додона расположено 500 городов, каждый из которых имеет форму правильной 37-угольной звезды, в вершинах которой находятся башни. Додон решил обнести их выпуклой стеной так, чтобы каждый отрезок стены соединял две башни. Доказать, что стена будет состоять не менее чем из 37 отрезков. (Если несколько отрезков лежат на одной прямой, то они считаются за один.)

Вниз   Решение


В равнобедренный треугольник ABC  (AB = BC)  вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что  AN = ⅜ AB.  Найдите радиус окружности, если площадь треугольника ABC равна 12.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 87]      



Задача 86980

Тема:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 8,9

В треугольной пирамиде SABC высота SO проходит через точку O – центр круга, вписанного в основание ABC пирамиды. Известно, что SAC = 60o , SCA = 45o , а отношение площади треугольника AOB к площади треугольника ABC равно . Найдите угол BSC .
Прислать комментарий     Решение


Задача 52687

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Отношения линейных элементов подобных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

К окружности, вписанной в равнобедренный треугольник с основанием 12 и высотой 8, проведена касательная, параллельная основанию.
Найдите длину отрезка этой касательной, заключённого между сторонами треугольника.

Прислать комментарий     Решение

Задача 52787

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.

Прислать комментарий     Решение


Задача 108971

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Доказать, что если в треугольнике ABC со стороной  BC = 1  радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r.

Прислать комментарий     Решение

Задача 110984

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В равнобедренный треугольник ABC  (AB = BC)  вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что  AN = ⅜ AB.  Найдите радиус окружности, если площадь треугольника ABC равна 12.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .