Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 56]
|
|
Сложность: 5- Классы: 9,10,11
|
На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу
прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по
направлению к ней. Длина прыжка равна половине расстояния до этой вершины.
Сможет ли кузнечик попасть в лунку?
|
|
Сложность: 5- Классы: 8,9,10,11
|
Куб со стороной
n (
n![](show_document.php?id=1636352)
3
) разбит перегородками на единичные кубики.
Какое минимальное число перегородок между единичными кубиками
нужно удалить, чтобы из каждого кубика можно было добраться до
границы куба?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного
замкнутого верёвочного контура, то игрок, сделавший последний ход, считается
проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?
|
|
Сложность: 4 Классы: 6,7,8,9
|
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка A на плане) до своего отеля (точка B). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет.
На бесконечном листе клетчатой бумаги
N клеток
окрашено в черный цвет. Докажите, что из этого листа
можно вырезать конечное число квадратов так, что будут
выполняться два условия: 1) все черные клетки лежат в вырезанных
квадратах; 2) в любом вырезанном квадрате
K площадь черных клеток
составит не менее 1/5 и не более 4/5 площади
K.
Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 56]