ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дан параллелограмм ABCD, у которого AB = 5, AD = 2$ \sqrt{3}$ + 2 и $ \angle$BAD = 30o. На стороне AB взята такая точка K, что AK : KB = 4 : 1. Через точку K параллельно AD проведена прямая. На этой прямой внутри параллелограмма выбрана точка L, а на стороне AD выбрана точка M так, что AM = KL. Прямые BM и CL пересекаются в точке N. Найдите угол BKN.

Вниз   Решение


а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?

ВверхВниз   Решение


Через центр единичного куба проведена плоскость, не проходящая через ребро куба и делящая куб на два многогранника. Докажите, что в каждом из получившихся многогранников найдётся диагональ, длина которой не меньше .

ВверхВниз   Решение


Докажите, что угол наклонной с плоскостью есть наименьший из углов, образованных этой наклонной со всевозможными прямыми плоскости.

ВверхВниз   Решение


Две сферы с центрами O1 и O2 пересечены плоскостью P , перпендикулярной отрезку O1O2 и проходящей через его середину. Плоскость P делит площадь поверхности первой сферы в отношении m:1 , а площадь поверхности второй сферы в отношении n:1 ( m>1 , n>1 ). Найдите отношение радиусов этих сфер.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 111186

Темы:   [ Площадь сферы и ее частей ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 10,11

В основании пирамиды SABC лежит треугольник ABC , у которого AB=15 , BC=20 , а радиус окружности, описанной около этого треугольника, равен 5 . На сторонах треугольника ABC как на диаметрах построены три сферы, пересекающиеся в точке O . Точка O является центром четвёртой сферы, причём вершина пирамиды S есть точка касания этой сферы с некоторой плоскостью, параллельной плоскости основания ABC . Площадь части четвёртой сферы, которая заключена внутри трёхгранного угла, образованного лучами OA , OB и OC , равна 8π . Найдите объём пирамиды SABC .
Прислать комментарий     Решение


Задача 111187

Темы:   [ Площадь сферы и ее частей ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 10,11

В основании пирамиды SABC лежит треугольник ABC , у которого AB=18 , BC=22 , а sin ABC = . На сторонах треугольника ABC как на диаметрах построены три сферы, пересекающиеся в точке O . Точка O является центром четвёртой сферы, причём вершина пирамиды S есть точка касания этой сферы с некоторой плоскостью, параллельной плоскости основания ABC . Площадь части четвёртой сферы, которая заключена внутри трёхгранного угла, образованного лучами OA , OB и OC , равна 6π . Найдите объём пирамиды SABC .
Прислать комментарий     Решение


Задача 111425

Темы:   [ Площадь сферы и ее частей ]
[ Поверхность круглых тел ]
[ Конус ]
Сложность: 4
Классы: 10,11

На высоте конуса как на диаметре построена сфера. Площадь поверхности части сферы, лежащей внутри конуса, равна площади части поверхности конуса, лежащей внутри сферы. Найдите угол в осевом сечении конуса.
Прислать комментарий     Решение


Задача 111426

Тема:   [ Площадь сферы и ее частей ]
Сложность: 4
Классы: 10,11

Две сферы с центрами O1 и O2 пересечены плоскостью P , перпендикулярной отрезку O1O2 и проходящей через его середину. Плоскость P делит площадь поверхности первой сферы в отношении m:1 , а площадь поверхности второй сферы в отношении n:1 ( m>1 , n>1 ). Найдите отношение радиусов этих сфер.
Прислать комментарий     Решение


Задача 111427

Темы:   [ Площадь сферы и ее частей ]
[ Поверхность круглых тел ]
[ Конус ]
Сложность: 4
Классы: 10,11

На высоте конуса как на диаметре построена сфера. Площадь части поверхности сферы, лежащей вне конуса, равна площади основания конуса. Найдите угол в осевом сечении конуса.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .