ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В параллелограмме ABCD биссектрисы углов при стороне AD делят сторону BC точками M и N так, что BM : MN = 1 : 7. Найдите BC, если AB = 12. ![]() ![]() Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC, ![]() ![]() |
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 2247]
Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC,
На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.
В параллелограмме ABCD биссектрисы углов при стороне AD делят сторону BC точками M и N так, что BM : MN = 1 : 7. Найдите BC, если AB = 12.
Известно, что для вписанного в окружность четырёхугольника ABCD выполнено равенство AB : BC = AD : DC. Прямая, проходящая через вершину B и середину диагонали AC, пересекает окружность в точке M, отличной от B. Докажите, что AM = CD.
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |