Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 204]
|
|
Сложность: 4+ Классы: 10,11
|
а) Все вершины пирамиды лежат на гранях куба, но не на
его ребрах, причем на каждой грани лежит хотя бы одна вершина.
Какое наибольшее количество вершин может иметь пирамида?
б) Все вершины пирамиды лежат в плоскостях граней куба, но не на
прямых, содержащих его ребра, причем в плоскости каждой грани
лежит хотя бы одна вершина. Какое наибольшее количество вершин
может иметь пирамида?
|
|
Сложность: 4+ Классы: 10,11
|
Астрономический прожектор освещает октант (трёхгранный угол, у которого все
плоские углы прямые). Прожектор помещён в центр куба. Можно ли его повернуть
таким образом, чтобы он не освещал ни одной вершины куба?
|
|
Сложность: 5- Классы: 9,10,11
|
Куб n×n×n сложен из единичных кубиков. Дана замкнутая несамопересекающаяся ломаная, каждое звено которой соединяет центры двух соседних (имеющих общую грань) кубиков. Назовём отмёченными грани кубиков, пересекаемые данной ломаной. Докажите, что рёбра кубиков можно окрасить в два цвета так, чтобы каждая отмеченная грань имела нечётное число, а всякая неотмеченная грань – чётное число сторон каждого цвета.
|
|
Сложность: 5 Классы: 10,11
|
На диагонали
AC нижней грани единичного куба
ABCDA1B1C1D1
отложен отрезок
AE длины
l . На диагонали
B1D1 его верхней
грани отложен отрезок
B1F длиной
ml . При каком
l (и
фиксированном
m>0 ) длина отрезка
EF будет наименьшей?
|
|
Сложность: 6+ Классы: 10,11
|
Поместить в куб окружность наибольшего возможного радиуса.
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 204]