ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовем многогранник хорошим, если его объем (измеренный в м3 ) численно равен площади его поверхности (измеренной в м2 ). Можно ли какой-нибудь хороший тетраэдр разместить внутри какого-нибудь хорошего параллелепипеда?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 115354

Темы:   [ Неравенства с объемами ]
[ Объем тетраэдра и пирамиды ]
[ Объем тела равен сумме объемов его частей ]
[ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 10,11

В основании четырёхугольной пирамиды SABCD лежит параллелограмм ABCD . Докажите, что для любой точки O внутри пирамиды сумма объёмов тетраэдров OSAB и OSCD равна сумме объёмов тетраэдров OSBC и OSDA .
Прислать комментарий     Решение


Задача 115389

Темы:   [ Неравенства с объемами ]
[ Объем тела равен сумме объемов его частей ]
[ Касающиеся сферы ]
[ Шар и его части ]
[ Объем шара, сегмента и проч. ]
[ Взвешивания ]
Сложность: 3+
Классы: 10,11

На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.)
Прислать комментарий     Решение


Задача 111768

Темы:   [ Неравенства с объемами ]
[ Неравенства с площадями ]
[ Объем тетраэдра и пирамиды ]
[ Сфера, вписанная в тетраэдр ]
[ Объем параллелепипеда ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4+
Классы: 10,11

Назовем многогранник хорошим, если его объем (измеренный в м3 ) численно равен площади его поверхности (измеренной в м2 ). Можно ли какой-нибудь хороший тетраэдр разместить внутри какого-нибудь хорошего параллелепипеда?
Прислать комментарий     Решение


Задача 79484

Темы:   [ Объем тетраэдра и пирамиды ]
[ Неравенства с объемами ]
Сложность: 4
Классы: 11

Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3.
Прислать комментарий     Решение


Задача 87369

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Неравенства с объемами ]
Сложность: 4
Классы: 10,11

Найдите наибольшее значение объёма пирамиды SABC при следующих ограничениях

SA 4, SB 7, SC 9, AB = 5, BC 6, AC 8.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .