Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 508]
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.)
Шестиугольник
ABCDEF вписан в окружность. Оказалось,
что
AB=BD ,
CE=EF . Диагонали
AC и
BE пересекаются
в точке
X , диагонали
BE и
DF — в точке
Y ,
диагонали
BF и
AE — в точке
Z . Докажите, что
треугольник
XYZ — равнобедренный.
BB1
и
CC1
— высоты остроугольного
треугольника
ABC с углом
A , равным
30
o ;
B2
и
C2
— середины сторон
AC и
AB
соответственно. Докажите, что отрезки
B1
C2
и
B2
C1
перпендикулярны.
На неравных сторонах
AB и
AC треугольника
ABC
внешним образом построены равнобедренные треугольники
AC1B и
AB1C с углом φ при вершине.
а)
M – точка медианы
AA1 (или её продолжения), равноудаленная от точек
B1 и
C1. Докажите, что ∠
B1MC1 = φ.
б)
O – точка серединного перпендикуляра к отрезку
BC, равноудаленная от точек
B1 и
C1. Докажите, что ∠
B1OC1 = 180° – φ.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.
Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 508]