ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Площадь трапеции ABCD равна 90. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции вдвое больше другого. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 129]
Диагональ равнобедренной трапеции делит её тупой угол пополам. Меньшее основание трапеции равно 3, периметр равен 42.
В равнобедренной трапеции ABCD боковая сторона AB и меньшее основание BC равны 2, а BD перпендикулярно AB. Найдите площадь этой трапеции.
Трапеция, основания которой равны a и b (a > b), рассечена прямой, параллельной основаниям, на две трапеции, площади которых относятся как k : p. Найти длину общей стороны образовавшихся трапеций.
В трапеции основания равны 84 и 42, а боковые стороны – 39 и 45. Через точку пересечения диагоналей параллельно основаниям проведена прямая.
Площадь трапеции ABCD равна 90. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции вдвое больше другого.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 129] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|