Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 129]
Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.
Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны.
Найдите радиус окружности.
Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами
трапеции. Угол между основанием AB и боковой стороной AD трапеции
равен 60°. Докажите, что EK || AB и найдите площадь
трапеции ABKE.
В равнобедренную трапецию с боковой стороной, равной 9,
вписана окружность радиуса 4. Найдите площадь трапеции.
Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 129]