ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Катеты прямоугольного треугольника равны 3 и 4. Найдите площадь треугольника с вершинами в точках касания вписанной окружности со сторонами треугольника.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 95]      



Задача 115635

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Катеты прямоугольного треугольника равны 3 и 4. Найдите площадь треугольника с вершинами в точках касания вписанной окружности со сторонами треугольника.
Прислать комментарий     Решение


Задача 115637

Тема:   [ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

На сторонах AB , BC и AC треугольника ABC , площадь которого равна 75, расположены точки M , N и K соответственно. Известно, что M — середина AB , площадь треугольника BMN равна 15, а площадь треугольника AMK равна 25. Найдите площадь треугольника CNK .
Прислать комментарий     Решение


Задача 115638

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9

В треугольник ABC со сторонами  AB = 18  и  BC = 12  вписан параллелограмм BKLM, причём точки K, L и M лежат на сторонах AB, AC и BC соответственно. Известно, что площадь параллелограмма составляет 4/9 площади треугольника ABC. Найдите стороны параллелограмма.

Прислать комментарий     Решение

Задача 116290

Тема:   [ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC , площадь которого равна 50, взяты соответственно точки M и K так, что AM:MB = 1:5 , а AK:KC = 3:2 . Найдите площадь треугольника AMK .
Прислать комментарий     Решение


Задача 116355

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки подобия ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9,10

На сторонах BC и AC треугольника ABC взяты соответственно точки M и N, причём  CM : MB = 1 : 3  и  AN : NC = 3 : 2.  Отрезки AM и BN пересекаются в точке K. Найдите площадь четырёхугольника CMKN, если известно, что площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .