ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).
Чему равен периметр внутреннего пятиугольника ABCDE, если длина исходной ломаной равна 1?

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 239]      



Задача 115687

Темы:   [ Ломаные ]
[ Пятиугольники ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4
Классы: 8,9

Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).
Чему равен периметр внутреннего пятиугольника ABCDE, если длина исходной ломаной равна 1?

Прислать комментарий     Решение

Задача 115921

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4
Классы: 8,9

Точка M взята на стороне AC равностороннего треугольника ABC, а на продолжении стороны BC за точку C отмечена точка N, причём  BM = MN.
Докажите, что  AM = CN.

Прислать комментарий     Решение

Задача 116170

Темы:   [ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.

Прислать комментарий     Решение

Задача 108201

Темы:   [ Пятиугольники ]
[ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Принцип Дирихле (углы и длины) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4+
Классы: 7,8,9,10

В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если  AB = AE = ED = 1,  то  BC + CD  < 1.

Прислать комментарий     Решение

Задача 64977

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .