ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка единственна.

 

Вниз   Решение


Найдите площадь полной поверхности правильного тетраэдра с ребром, равным a .

ВверхВниз   Решение


При каких натуральных n выполняется неравенство  2n ≥ n³?

ВверхВниз   Решение


Вася задумал восемь клеток шахматной доски, никакие две из которых не лежат в одной строке или в одном столбце. За ход Петя выставляет на доску восемь ладей, не бьющих друг друга, а затем Вася указывает все ладьи, стоящие на задуманных клетках. Если количество ладей, указанных Васей на этом ходе, чётно (то есть 0, 2, 4, 6 или 8), то Петя выигрывает; иначе все фигуры снимаются с доски и Петя делает следующий ход. За какое наименьшее число ходов Петя сможет гарантированно выиграть?

ВверхВниз   Решение


В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



Задача 76476

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 10,11

Центр O описанной около треугольника ABC окружности отражается симметрично относительно каждой из сторон. По трём полученным точкам O1, O2, O3 восстановить треугольник ABC, если все остальное стёрто.
Прислать комментарий     Решение


Задача 76486

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 10,11

Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.
Прислать комментарий     Решение


Задача 115869

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

Прислать комментарий     Решение

Задача 32109

Темы:   [ Построение треугольников по различным точкам ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
[ Пятиугольники ]
Сложность: 4-
Классы: 8,9,10

Восстановите  а) треугольник;  б) пятиугольник по серединам его сторон.

Прислать комментарий     Решение

Задача 52351

Темы:   [ Построение треугольников по различным точкам ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

В данную окружность впишите прямоугольный треугольник, катеты которого проходили бы через две данные точки внутри окружности.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .