ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Найдите наименьшее значение  x² + y²,  если  x2y² + 6x + 4y + 5 = 0.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 266]      



Задача 110047

Темы:   [ Рациональные и иррациональные числа ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Ненулевые числа a и b удовлетворяют равенству  a²b²(a²b² + 4) = 2(a6 + b6).  Докажите, что хотя бы одно из них иррационально.

Прислать комментарий     Решение

Задача 115992

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Разложение на множители ]
[ Исследование квадратного трехчлена ]
[ Наибольшая или наименьшая длина ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Найдите наименьшее значение  x² + y²,  если  x2y² + 6x + 4y + 5 = 0.

Прислать комментарий     Решение

Задача 78213

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9,10

Доказать, что существует бесконечно много натуральных чисел, не представимых в виде  p + n2k  ни при каких простых p и целых n и k.

Прислать комментарий     Решение

Задача 78682

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Известно, что  an – bn  делится на n (a, b, n – натуральные числа,  a ≠ b).  Доказать, что делится на n.

Прислать комментарий     Решение

Задача 115512

Темы:   [ Выпуклость и вогнутость (прочее) ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что если числа x, y, z при некоторых значениях p и q являются решениями системы
     y = xn + px + q,  z = yn + py + q,  x = zn + pz + q,
то выполнено неравенство  x²y + y²z + z²x ≥ x²z + y²x + z²y.
Рассмотрите случаи   а)  n = 2;   б)  n = 2010.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .