ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) На бесконечном листе клетчатой бумаги двое играют в такую игру: первый окрашивает произвольную клетку в красный цвет; второй окрашивает произвольную неокрашенную клетку в синий цвет; затем первый окрашивает произвольную неокрашенную клетку в красный цвет, а второй еще одну неокрашенную клетку в синий цвет и т. д. Первый стремится к тому, чтобы центры каких-то четырёх
красных клеток образовали квадрат со сторонами, параллельными линиям сетки, а
второй хочет ему помешать. Может ли выиграть первый игрок? ![]() ![]() Около шара радиуса 1 описан конус, высота которого вдвое больше диаметра шара. Найдите отношение полной поверхности конуса к поверхности шара. ![]() ![]() ![]() В пространстве даны три отрезка A1A2, B1B2 и C1C2, не лежащие в одной плоскости и пересекающиеся в одной точке P. Обозначим через Oijk центр сферы, проходящей через точки Ai, Bj, Ck и P. Докажите, что прямые O111O222, O112O221, O121O212 и O211O122 пересекаются в одной точке. ![]() ![]() ![]() Пусть ABCD — пространственный четырёхугольник, точки K1 и K2 делят соответственно стороны AB и DC в отношении ![]() ![]() ![]() Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости? ![]() ![]() ![]() Даны две точки и окружность. С помощью циркуля и линейки проведите через данные точки две секущие, хорды которых внутри данной окружности были бы равны и пересекались бы под данным углом α . ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]
Дан треугольник ABC, AA1, BB1 и CC1 – его биссектрисы. Известно, что величины углов A, B и C относятся как 4 : 2 : 1. Докажите, что A1B1 = A1C1.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |