ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С помощью циркуля и линейки постройте равносторонний треугольник, у которого одна из вершин была в данной точке, а две другие — на двух данных окружностях. Решение |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 401]
На сторонах треугольника ABC внешним образом построены правильные треугольники ABC1 , AB1C и A1BC . Пусть P и Q — середины отрезков A1B1 и A1C1 . Докажите, что треугольник APQ правильный.
а) эти отрезки равны между собой; б) эти отрезки пересекаются в одной точке; в) если эта точка находится внутри треугольника ABC , то сумма расстояний от неё до трёх вершин треугольника равна длине каждого из отрезков AA1 , BB1 , CC1 .
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|