ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Oколо четырёхугольника ABCD можно описать окружность. Точка P – основание перпендикуляра, опущенного из точки A на прямую BC, Q – из A на DC, R – из D на AB и T – из D на BC. Докажите, что точки P, Q, R и T лежат на одной окружности. Решение |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 496]
Во вписанном четырёхугольнике ABCD известны отношения AB : DC = 1 : 2 и BD : AC = 2 : 3. Найдите DA : BC.
Биссектрисы углов трапеции образуют при пересечении четырёхугольник с перпендикулярными диагоналями.
Oколо четырёхугольника ABCD можно описать окружность. Точка P – основание перпендикуляра, опущенного из точки A на прямую BC, Q – из A на DC, R – из D на AB и T – из D на BC. Докажите, что точки P, Q, R и T лежат на одной окружности.
AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что CK = CL. Прямая KL и биссектриса угла B пересекаются в точке P.
Через концы основания BC трапеции ABCD провели окружность, которая пересекла боковые стороны AB и CD в точках M и N соответственно. Известно, что точка T пересечения отрезков AN и DM также лежит на этой окружности. Докажите, что TB = TC.
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|