ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Центральная симметрия
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи AD и BE — высоты треугольника ABC. Оказалось, что точка C', симметричная вершине C относительно середины отрезка DE, лежит на стороне AB. Докажите, что AB – касательная к окружности, описанной около треугольника DEC'. Решение |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 158]
Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами (x, y), лежащие в полосе 0 ≤ x ≤ b – 1. Каждой такой точке припишем целое число N(x, y) = ax + by.
На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.
AD и BE — высоты треугольника ABC. Оказалось, что точка C', симметричная вершине C относительно середины отрезка DE, лежит на стороне AB. Докажите, что AB – касательная к окружности, описанной около треугольника DEC'.
На окружности отмечены 10 точек, занумерованные по часовой стрелке: A1, A2, ..., A10, причём их можно разбить на пары симметричных относительно центра окружности. Изначально в каждой отмеченной точке сидит по кузнечику. Каждую минуту один из кузнечиков прыгает вдоль окружности через своего соседа так, чтобы расстояние между ними не изменилось. При этом нельзя пролетать над другими кузнечиками и попадать в точку, где уже сидит кузнечик. Через некоторое время оказалось, что какие-то 9 кузнечиков сидят в точках A1, A2, ..., A9, а десятый сидит на дуге A9A10A1. Можно ли утверждать, что он сидит именно в точке A10?
В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что QM ⊥ AC и PM ⊥ AB. Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что BH = CX.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 158] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|