ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 508]      



Задача 109189

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правило произведения ]
Сложность: 4-
Классы: 8,9,10,11

Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

Прислать комментарий     Решение

Задача 109609

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Паскаля ]
[ Симметрия помогает решить задачу ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

Прислать комментарий     Решение

Задача 110062

Темы:   [ Исследование квадратного трехчлена ]
[ Неравенство треугольника (прочее) ]
[ Произвольные многоугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Длины сторон многоугольника равны  a1, a2, ..., an.  Квадратный трёхчлен  f(x) таков, что  f(a1) = f(a2 + ... + an).
Докажите, что если A – сумма длин нескольких сторон многоугольника, B – сумма длин остальных его сторон, то  f(A) = f(B).

Прислать комментарий     Решение

Задача 116175

Темы:   [ Векторы помогают решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4-
Классы: 9,10,11

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

Прислать комментарий     Решение

Задача 79618

Темы:   [ Разные задачи на разрезания ]
[ Полуинварианты ]
[ Пятиугольники ]
Сложность: 4
Классы: 7,8,9,10

От пирога, имеющего форму выпуклого пятиугольника, можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. В какие точки пирога можно воткнуть свечку, чтобы её нельзя было отрезать?
Прислать комментарий     Решение


Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .