ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли поверхность октаэдра оклеить несколькими правильными шестиугольниками без наложений и пробелов?

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]      



Задача 98461

Темы:   [ Системы точек ]
[ Теория алгоритмов ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 10,11

На прямоугольном листе бумаги отмечены
  а) несколько точек на одной прямой;
  б) три точки.
Разрешается сложить лист бумаги несколько раз по прямой так, чтобы отмеченные точки не попали на линии сгиба, и затем один раз шилом проколоть сложенный лист насквозь. Докажите, что это можно сделать так, чтобы дырки оказались в точности в отмеченных точках и лишних дырок не получилось.

Прислать комментарий     Решение

Задача 104067

Темы:   [ Наглядная геометрия ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 6,7,8

Дед звал внука к себе в деревню:
  – Вот посмотришь, какой я необыкновенный сад посадил! У меня там растут груши и яблони, причём яблони посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
  – Ну и что тут интересного, – ответил внук. – У тебя, значит, яблонь вдвое меньше, чем груш.
  – А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду вдвое больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда.
Прислать комментарий     Решение


Задача 116413

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Основные свойства и определения правильных многогранников ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 10,11

Можно ли поверхность октаэдра оклеить несколькими правильными шестиугольниками без наложений и пробелов?

Прислать комментарий     Решение

Задача 79282

Темы:   [ Системы точек ]
[ Касающиеся окружности ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 7,8,9

На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?
Прислать комментарий     Решение


Задача 104061

Темы:   [ Наглядная геометрия ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 6,7,8

Дед звал внука к себе в деревню:
  – Вот посмотришь, какой я необыкновенный сад посадил! У меня там растёт четыре груши, а ещё есть яблони, причём они посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
  – Ну и что тут интересного, – ответил внук. – У тебя всего две яблони.
 – А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда. Постарайтесь разместить на рисунке как можно больше яблонь, не нарушая условий.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .