ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 116145

Темы:   [ Логика и теория множеств (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 2+
Классы: 7,8,9

Из четырёх неравенств  2x > 70,  x < 100,  4x > 25  и  x > 5  два истинны и два ложны. Найдите значение x, если известно, что оно целое.

Прислать комментарий     Решение

Задача 66563

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 6,7,8,9,10,11

Автор: Фольклор

Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее $3/7$ фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.
Прислать комментарий     Решение


Задача 67145

Темы:   [ Логика и теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8,9

Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?
Прислать комментарий     Решение


Задача 67178

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 7,8,9

На столе в ряд стоят $23$ шкатулки, в одной из которых находится приз. На каждой шкатулке написано либо «Здесь приза нет», либо «Приз в соседней шкатулке». Известно, что ровно одно из этих утверждений правдиво. Что написано на средней шкатулке?
Прислать комментарий     Решение


Задача 116490

Темы:   [ Логика и теория множеств (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8,9

Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .