Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 136]
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Казино предлагает игру по таким правилам. Игрок ставит любое целое
число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на
решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает
назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает
казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей
игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в
казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить
больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести
из казино после такой игры?
Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из
кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она
достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка?
Победив Кащея, потребовал Иван золота, чтобы выкупить Василису у разбойников.
Привёл его Кащей в пещеру и сказал: "В сундуке лежат золотые слитки. Но просто так их унести нельзя: они заколдованы. Переложи себе в суму один или несколько. Потом я переложу из сумы в сундук один или несколько, но обязательно другое число. Так мы будем по очереди перекладывать их: ты в суму, я в сундук, каждый раз новое число. Когда новое перекладывание станет невозможным, сможешь унести свою суму со слитками". Какое наибольшее число слитков может унести Иван, как бы ни действовал Кащей, если в сундуке исходно лежит а) 13; б) 14 золотых слитков? Как ему это сделать?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Двое делят кусок сыра. Сначала первый режет сыр на два куска, потом второй – любой из кусков на два, и так далее, пока не получится пять кусков. Затем первый берёт себе один кусок, потом второй – один из оставшихся кусков, потом снова первый – и так, пока куски не закончатся. Для каждого игрока выяснить, какое наибольшее количество сыра он может себе гарантировать.
|
|
Сложность: 4+ Классы: 10,11
|
На столе стоят 2004 коробочки, в каждой из которых лежит по
одному шарику. Известно, что некоторые из шариков – белые, и их
количество четно. Разрешается указать на любые две коробочки и спросить,
есть ли в них хотя бы один белый шарик. За какое наименьшее количество
вопросов можно гарантированно определить какую-нибудь коробочку, в которой
лежит белый шарик?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 136]