ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Касательные, проведённые к описанной окружности остроугольного треугольника ABC в точках A и C, пересекаются в точке Z. AA1, CC1 – высоты. Прямая A1C1 пересекает прямые ZA, ZC в точках X и Y соответственно. Докажите, что описанные окружности треугольников ABC и XYZ касаются. Решение |
Страница: << 1 2 3 [Всего задач: 15]
В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника.
Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.
Касательные, проведённые к описанной окружности остроугольного треугольника ABC в точках A и C, пересекаются в точке Z. AA1, CC1 – высоты. Прямая A1C1 пересекает прямые ZA, ZC в точках X и Y соответственно. Докажите, что описанные окружности треугольников ABC и XYZ касаются.
Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.
Страница: << 1 2 3 [Всего задач: 15] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|