ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Натуральные числа $a$ и $b$ таковы, что $a^{n+1} + b^{n+1}$ делится на $a^n+b^n$ для бесконечного множества различных натуральных $n$. Обязательно ли тогда $a = b$? ![]() ![]()
Радиус окружности, вписанной в ромб, равен r, а острый угол
ромба равен
![]() ![]() ![]() С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.
![]() ![]() ![]() Если a ≡ b (mod m) и c ≡ d (mod m), то a – c ≡ b – d (mod m). ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 368]
Если a ≡ b (mod m) и c ≡ d (mod m), то a + c ≡ b + d (mod m).
Если a ≡ b (mod m) и c ≡ d (mod m), то a – c ≡ b – d (mod m).
Если a ≡ b (mod m) и c ≡ d (mod m), то ac ≡ bd (mod m).
Если a ≡ b (mod m), n – натуральное число, то an ≡ bn (mod m).
Найдите остаток от деления 6100 на 7.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 368] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |