ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На шести ёлках сидят шесть чижей, на каждой ёлке – по чижу. Ёлки растут в ряд с интервалами в 10 метров. Если какой-то чиж перелетает с одной ёлки на другую, то какой-то другой чиж обязательно перелетает на столько же метров, но в обратном направлении.
  а) Могут ли все чижи собраться на одной ёлке?
  б) А если чижей и ёлок – семь?

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 629]      



Задача 104082

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Простые числа и их свойства ]
Сложность: 3-
Классы: 6,7,8

В магическом квадрате суммы чисел в каждой строке, в каждом столбце и на обеих диагоналях равны.
Можно ли составить магический квадрат 3×3 из первых девяти простых чисел?

Прислать комментарий     Решение

Задача 30429

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8

В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).

Прислать комментарий     Решение

Задача 30632

Темы:   [ Признаки делимости на 11 ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.

Прислать комментарий     Решение

Задача 30754

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7

На шести ёлках сидят шесть чижей, на каждой ёлке – по чижу. Ёлки растут в ряд с интервалами в 10 метров. Если какой-то чиж перелетает с одной ёлки на другую, то какой-то другой чиж обязательно перелетает на столько же метров, но в обратном направлении.
  а) Могут ли все чижи собраться на одной ёлке?
  б) А если чижей и ёлок – семь?

Прислать комментарий     Решение

Задача 30758

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел.
Можно ли добиться того, чтобы все числа на доске стали нулями?

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .