ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Страница: 1 2 >> [Всего задач: 8]
Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого: Решение а) Первый способ. Будем двигаться вдоль прямой в одном направлении. При каждом пересечении границы многоугольника мы переходит снаружи многоугольника внутрь или изнутри наружу. Поскольку оба "конца" прямой находятся снаружи многоугольника, мы пересечём границу чётное число раз. Значит, мы не можем пересечь все стороны (их нечётное число, а дважды одну сторону пересечь нельзя). б) Из рисунка видно, как при любом n построить 2n-угольник и прямую, пересекающую все его стороны. Ответа) Не может; б) может.
На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая l пересекает её ровно в 1985 точках. РешениеПрямая l задаёт две полуплоскости; одну из них будем называть верхней, а другую нижней. Пусть n1 (соответственно n2) – число вершин ломаной, лежащих на прямой l, для которых оба выходящих из них звена лежат в верхней (соответственно в нижней) полуплоскости, а m – число всех остальных точек пересечения прямой l и ломаной. Совершим обход ломаной, выйдя из некоторой точки, не лежащей на прямой l, и вернувшись в ту же точку. При этом мы переходим из одной полуплоскости в другую, только проходя через любую из m точек пересечения. Так как мы вернёмся в ту же точку, из которой начали обход, то m чётно. По условию n1 + n2 + m = 1985, поэтому число n1 + n2 нечётно, то есть n1 ≠ n2. Пусть для определенности n1 > n2. Проведём тогда в верхней полуплоскости прямую l1, параллельную l и удалённую от неё на расстояние меньшее чем любое ненулевое расстояние от l до вершин ломаной (см. рис.). Число точек пересечения ломаной с прямой l1 равно 2n1 + m > n1 + n2 + m = 1985, то есть l1 – искомая прямая.
На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов? РешениеПосле каждого удара изменяется ориентация треугольника ABC. Поэтому вернуться в исходное состояние можно только после чётного числа ударов. ОтветНе могут.
На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей? РешениеСм. задачу 87972 б).
Окружность разбита точками на 3k дуг: по k дуг длины 1, 2 и 3. Докажите, что найдутся две диаметрально противоположные точки деления. РешениеПредположим, что окружность разбита на дуги указанным образом, причём диаметрально противоположных точек деления нет. Поскольку против концов дуги длины 1 не лежат точки разбиения, то против неё лежит дуга длины 3. Выбросим одну из дуг длины 1 и противолежащую ей дугу
Страница: 1 2 >> [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |