ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.
  а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.
  б) Докажите, что большего числа самопересечений такая ломаная не может иметь.

Вниз   Решение


При каких натуральных n выполняется неравенство  2n ≥ n³?

Вверх   Решение

Задачи

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 5977]      



Задача 30903

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 7,8

При каких натуральных n выполняется неравенство  2n ≥ n³?

Прислать комментарий     Решение

Задача 30904

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 6,7

Докажите, что для любого натурального n выполняется неравенство  3n > n·2n.

Прислать комментарий     Решение

Задача 30906

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Произведение положительных чисел a1, a2, ..., an равно 1. Докажите, что  (1 + a1)(1 + a2)...(1 + an) ≥ 2n.

Прислать комментарий     Решение

Задача 30917

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?

Прислать комментарий     Решение

Задача 30923

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 6,7

Докажите, что для любого x выполнено неравенство  x4x³ + 3x² – 2x + 2 ≥ 0.

Прислать комментарий     Решение

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 5977]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .