Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 368]
|
|
Сложность: 5 Классы: 8,9,10
|
30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
а) четырёх вечеров недостаточно,
б) пяти вечеров также недостаточно,
в) а десяти вечеров достаточно,
г) и даже семи вечеров тоже достаточно.
|
|
Сложность: 5 Классы: 9,10,11
|
В таблице 2n×n были выписаны всевозможные строки длины n из чисел 1 и –1. Затем часть чисел заменили нулями. Докажите, что можно выбрать несколько строк, сумма которых есть строка из нулей. (Суммой строк называется строка, элементы которой являются суммами соответствующих элементов слагаемых.)
|
|
Сложность: 3- Классы: 7,8,9
|
Сумма 123 чисел равна 3813. Доказать, что из этих чисел можно выбрать 100 с суммой не меньше 3100.
|
|
Сложность: 3+ Классы: 6,7,8
|
В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.
|
|
Сложность: 3+ Классы: 9,10
|
Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?
Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 368]