Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 367]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Имеется много карточек, на каждой из которых записано натуральное число от 1 до n. Известно, что сумма чисел на всех карточках равна n!·k, где k – целое число. Докажите, что карточки можно разложить на k групп так, чтобы в каждой группе сумма чисел, записанных на карточках, равнялась n!.
|
|
Сложность: 4 Классы: 10,11
|
Рассмотрим последовательность, первые два члена которой равны 1 и 2 соответственно, а каждый следующий член – это наименьшее натуральное число, которое еще не встретилось в последовательности и которое не взаимно просто с предыдущим членом последовательности. Докажите, что каждое
натуральное число входит в эту последовательность.
|
|
Сложность: 4 Классы: 7,8,9,10
|
В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?
|
|
Сложность: 4 Классы: 8,9,10
|
а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?
б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество
машин нужно купить семье, чтобы каждый день каждый член семьи мог
самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?
|
|
Сложность: 4 Классы: 8,9,10
|
300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими.
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 367]