Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 152]
|
|
Сложность: 2+ Классы: 6,7,8
|
Верно ли, что из любых 10 отрезков найдутся три,
из которых можно составить треугольник?
|
|
Сложность: 2+ Классы: 6,7,8
|
Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
|
|
Сложность: 2+ Классы: 8,9,10
|
Докажите, что шесть ребер любого тетраэдра можно разбить на три пары
(a,b), (c,d), (e,f) так, чтобы из отрезков длин a+b, c+d, e+f
можно было составить треугольник.
|
|
Сложность: 3- Классы: 7,8,9
|
В Старой Калитве живет 50 школьников, а в Средних Болтаях 100 школьников. Где нужно построить школу, чтобы сумма расстояний, проходимых всеми школьниками, была наименьшей?
|
|
Сложность: 3 Классы: 7,8,9
|
В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске по 500, в Екатеринбурге 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 152]