Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 152]
|
|
Сложность: 3+ Классы: 8,9,10
|
В остроугольном треугольнике расположен квадрат: две его вершины находятся на одной из сторон треугольника, а две другие по одной на других сторонах. Аналогичные квадраты построены для двух других сторон треугольника. Докажите, что из трех отрезков, равных сторонам этих квадратов, можно составить остроугольный треугольник.
|
|
Сложность: 3+ Классы: 10,11
|
Дан
ABC и точка
D внутри него, причем
AC -
DA > 1 и
BC -
BD > 1. Берётся
произвольная точка
E внутри отрезка
AB. Доказать, что
EC -
ED > 1.
Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.
|
|
Сложность: 3+ Классы: 7,8,9
|
Длины
a,
b,
c,
d четырёх отрезков удовлетворяют неравенствам 0 <
a ≤
b ≤
c <
d,
d <
a +
b +
c. Можно ли из этих отрезков сложить трапецию?
|
|
Сложность: 3+ Классы: 7,8,9
|
У Коли есть отрезок длины
k, а у Лёвы — отрезок длины
l. Сначала Коля
делит свой отрезок на три части, а потом Лёва делит на три части свой
отрезок. Если из получившихся шести отрезков можно сложить два треугольника,
то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от
отношения
k/
l, может обеспечить себе победу, и как ему следует играть?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 152]