ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Занятия Вечерней Математической Школы проходят в девяти аудиториях. Среди прочих, на эти занятия приходят 19 учеников из одной и той же школы.
  а) Докажите, что как их не пересаживай, хотя бы в одной аудитории окажется не меньше трех таких школьников.
  б) Верно ли, что в какой-нибудь аудитории обязательно окажется ровно три таких школьника?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 367]      



Задача 21998

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

В алфавите языка племени Ни-Бум-Бум 22 согласных и 11 гласных; словом в этом языке называется произвольное буквосочетание, в котором нет двух согласных подряд и ни одна буква не использована дважды. Алфавит разбили на шесть непустых групп. Докажите, что из всех букв одной из групп можно составить слово.

Прислать комментарий     Решение

Задача 23304

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 6,7,8

Можно ли в таблице 6×6 расставить числа 0, 1 и –1 так, чтобы все суммы чисел по вертикалям, горизонталям и двум главным диагоналям были различны?

Прислать комментарий     Решение

Задача 32785

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

Занятия Вечерней Математической Школы проходят в девяти аудиториях. Среди прочих, на эти занятия приходят 19 учеников из одной и той же школы.
  а) Докажите, что как их не пересаживай, хотя бы в одной аудитории окажется не меньше трех таких школьников.
  б) Верно ли, что в какой-нибудь аудитории обязательно окажется ровно три таких школьника?
Прислать комментарий     Решение


Задача 35453

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

Имеется 101 пуговица одного из 11 цветов. Докажите, что либо среди этих пуговиц найдутся 11 пуговиц одного цвета, либо 11 пуговиц разных цветов.
Прислать комментарий     Решение


Задача 35506

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 7,8

Можно ли таблицу  n×n  заполнить числами –1, 0, 1 так, чтобы суммы во всех строках, во всех столбцах и на главных диагоналях были различны?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .