ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?

   Решение

Задачи

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 598]      



Задача 60346

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8

Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево (например, таких как 54345, 17071)?

Прислать комментарий     Решение

Задача 30387

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9

На какую цифру оканчивается число 777777?

Прислать комментарий     Решение

Задача 30404

Темы:   [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9

Найдите последнюю цифру числа  1² + 2² + ... + 99².

Прислать комментарий     Решение

Задача 60343

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

Прислать комментарий     Решение

Задача 32787

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Прислать комментарий     Решение


Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .