ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В прямоугольной таблице некоторые клетки отмечены: в них нарисованы звёздочки. Известно, что для любой отмеченной клетки количество звёздочек в её столбце совпадает с количеством звёздочек в её строке. Докажите, что число строк в таблице, в которых есть хоть одна звёздочка, равно числу столбцов таблицы, в которых есть хоть одна звёздочка. ![]() |
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 1111]
В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–". Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?
а) Какое максимальное количество слонов можно расставить на
доске 1000 на 1000 так, чтобы они не били друг друга?
Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
В прямоугольной таблице некоторые клетки отмечены: в них нарисованы звёздочки. Известно, что для любой отмеченной клетки количество звёздочек в её столбце совпадает с количеством звёздочек в её строке. Докажите, что число строк в таблице, в которых есть хоть одна звёздочка, равно числу столбцов таблицы, в которых есть хоть одна звёздочка.
Трава на всем лугу растет одинаково густо и быстро. Известно, что 70 коров съели бы её за 24 дня, 30 коров – за 60 дней.
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 1111] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |