ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если a, b, c – нечётные числа, то хотя бы одно из чисел  ab – 1,  bc – 1,  ca – 1  делится на 4.

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 606]      



Задача 35787

Темы:   [ Уравнения в целых числах ]
[ Деление с остатком ]
Сложность: 2+
Классы: 7,8,9

Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа?

Прислать комментарий     Решение

Задача 79650

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 7,8

Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000.

Прислать комментарий     Решение

Задача 97979

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд) можно выбрать три числа, сумма которых делится на 3.

Прислать комментарий     Решение

Задача 116450

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Делится ли число  2110 – 1  на 2200?

Прислать комментарий     Решение

Задача 35344

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 3-
Классы: 8,9

Докажите, что если a, b, c – нечётные числа, то хотя бы одно из чисел  ab – 1,  bc – 1,  ca – 1  делится на 4.

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .