ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 606]      



Задача 21972

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 6,7,8

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Прислать комментарий     Решение

Задача 21986

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Прислать комментарий     Решение

Задача 21987

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
[ Разложение на множители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 6,7,8

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Прислать комментарий     Решение

Задача 30372

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найдите остатки от деления
  а)  1989·1990·1991 + 19922  на 7;
  б) 9100 на 8.

Прислать комментарий     Решение

Задача 30373

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что  n³ + 2n  делится на 3 для любого натурального n.

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .